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1 Introduction

As interest in the interplay between artificial intelligence
and human-computer interaction increases, researchers
attempt to define models that accurately describe novel
interactions between humans and machines. Amongst
the many interactions that researchers have been study-
ing, eye-tracking has gained increasing attention. This
is because many studies have found that “facial biomet-
rics have more distinct features that allow for them to
have advantages over other biometrics such as palmistry
and fingerprint”. (Ameen Sulaiman and Sarhan Kocher,
2022) Since eye movement is the most frequent of all
facial movements, it is logical that eye-tracking research
has garnered increasing attention. Furthermore, since
eye movements are fundamental to the operation of the
visual system, the movement of the user’s eyes can pro-
vide a convenient and natural source of data input. Thus,
eye-tracking technology is applicable in many domains
such as psychology, marketing, medical, computer gam-
ing, and cognitive science. (Lim et al., 2022) Hence,
there is a need to optimize eye-tracking algorithms so
that they can be widely adopted for classification tasks.

In eye-tracking research, a fundamental process is to
perform feature labeling so that eye-tracking data can be
categorized based on the essential ocular activity indica-
tors. Traditionally, feature labeling was largely done by
humans which were both tedious and inefficient. Con-
sequently, to help researchers minimize the work and
effort of data labeling from scratch, we present machine
learning models that perform automated feature labeling,
specifically a bounding box prediction and classification
of human heads, on the Gaze Data for the Analysis of
Attention in Feature Films. The dataset contains robust
gaze information of human participants in response to
carefully curated film clips and has been augmented via
the annotation of selected high-level cinematographic
and ocular activity features.

In this work, we employ several architectures for face
detection to assist contemporary research done to study
the allocation of human gaze over visual stimuli. The
study will involve three parts. The first is a baseline
model that uses Haar Cascade, an object detection algo-
rithm used to identify features of a face in an image or a
real-time video. This approach performs feature detec-
tion on an image containing a face, based on the ratio
of the intensities of the pixels within the target image.

The second is to apply Vora et al.’s Fully Conventional
Head Detector (FCHD), an end-to-end trainable head
detection model, to perform classification and imple-
ment a localization function for the Gaze Data. (Vora
and Chilaka, 2018) The third is to employ Deepface, a
face recognition and facial attribute analysis framework
that wraps state-of-the-art models including VGG-Face,
Google FaceNet, Google OpenFace, Facebook Deep-
Face, DeepID, ArcFace, and Dlib. By exploring and
implementing these state-of-the-art models, this study
seeks to identify the limitations of current algorithms
in detecting people under diverse camera conditions,
human poses, and lighting.

2 Related Work

With the proliferation of deep learning techniques rang-
ing from neural networks to pre-trained processing mod-
els, there exists a multitude of computer vision research
done for constructing a trainable face detection model.
However, as Vora et al. point out, current state-of-the-art
face detection algorithms that incorporate deep learn-
ing models suffer from high false positives. (Vora and
Chilaka, 2018) This is because prominent models such
as an RCNN head detector that contextualizes person-
scene relations and pairwise relations amongst target
objects are designed specifically for image applications
where the average head size is small and the density
of people is low. Evidently, these algorithms struggle
to accurately identify faces in crowded scenes as they
fail to incorporate “large scale and density variations”
seen in these data. (Vora and Chilaka, 2018) As a so-
lution, Vora et al. propose FCHD to perform bounding
box prediction and classification of human heads. In
their research, Vora et al. concluded that the model not
only has low memory requirements but boasts a better
overall average precision (AP) which it achieves by “se-
lection of anchor sizes based on the effective field of the
network”. (Vora and Chilaka, 2018).

To further continue their studies in assessing the per-
formance of FCHD, we will apply it to the Gaze Data
for the Analysis of Attention in Feature Films. Test-
ing the model against this dataset is significant as it
serves as an effective testing set for the model. Com-
pared to the HollywoodHeads dataset that the model is
trained on, the Gaze Data dataset includes fewer aver-
age headcounts per scene and less crowd density. Given
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that the Vora et al. discovered that their model gives
false positives in scenarios where no heads are to be
detected, we hope to further the performance of their
FCHD model by fine-tuning the architecture to adjust
for diverse circumstances.

Another experiment we hope to further investigate is
DeepFace, a modern face recognition pipeline offered
by Serengil et al., which offers deep learning modules
for each of the four conventional stages of a face recog-
nition pipeline: detection, alignment, representation,
and verification. (Serengil and Ozpinar, 2020) The mod-
ule that is most relevant to the scope of our research is
that of representation. Similar to other prominent face
recognition models, DeepFace’s foundation is a convo-
lutional neural network (CNN). By training the CNN to
classify the identities of the objects in each input image,
DeepFace’s early layers are able to extract a few face
representation feature vectors. This allows it to adapt to
and verify faces it has never seen. Many studies have
shown the advantages of a CNN framework, including
that of Vu et al. who constructed a CNN framework that
merges context-aware models and a CNN-based local
director, and achieved state-of-the-art classification re-
sults on contextually challenging still images. (Vu et al.,
2015)

To continue, as aforementioned, DeepFace offers
many pre-trained state-of-the-art face recognition mod-
els to evaluate the scenes in our dataset. In their publica-
tion, Serengil et al. found that using a Facenet512 face
recognition model, testing on the LFW Face Database,
the model had an accuracy score of 99.65%, surpass-
ing the 97.53% accuracy that human beings have in
manual face recognition tasks for labeled faces. Thus,
we are employing the DeepFace library to effortlessly
test the performance of complex face detection models.
(Serengil and Ozpinar, 2020)

3 Dataset

The Gaze Data for the Analysis of Attention in Feature
Films is designed to facilitate the study of exogenous
eye movements. It is available publicly and contains ro-
bust gaze information of human participants in response
to carefully curated film clips. The gaze location was
recorded using a Gazepoint GP3 tabletop eye tracker
and the clips were chosen from a set of 13 candidate
films that maximized the presence of distinctive features.
The films, clip durations, directors, and cinematogra-
phers are summarized in Figure 1. As evident, the
films are prominent films produced between the years
1984 through 2014 and were selected by Breeden et
al. to ensure that the dataset minimized biases towards
individual styles of cinematographers.

For each of the films in Figure 1, clips were se-
lected with an eye toward data heterogeneity, so that
later computer vision techniques can be applied to dis-
tinguish between ocular activity features. To aid in the
exploration of higher-level image features and under-
stand their relationships to ocular activity, each clip has

Figure 1: Films, Clip Durations, Directors, and Cine-
matographers.

Figure 2: Binary Face Features

been augmented via frame-by-frame, hand-annotated
selected high-level cinematographic and ocular activity
features, including: faces, dialogue, camera motion, and
edits.

3.1 Pre-processing

The tool FFmpeg is used to generate frames such that the
frames of the raw film sequences are keyed to the hand-
coded features. To create a map to keep track of the
correspondence between hand-coded features and the
frames, both the gaze data and the hand-coded features
are stored as a Pandas data frame. Certain features of
‘head recognition‘ are selected based on their theoretical
relevance, and other features that seemed redundant and
ineffective are removed. The logic behind this is that
features such as dialogue, camera movement, and text
don’t demonstrate semantic importance in configuring
a head detection localization function in comparison to
features such as faces. Thus, from the two Pandas data
frames, most columns are dropped, excluding markers
related to frame rates, shot numbers, or Spatio-temporal
indicators. It is important to clarify that the features are
encoded as binary features, such that for each feature, its
presence or absence is marked by a 1 or 0 respectively.
Figure 2 provides an example of this.

Then, for each of the experimental approaches, the
data is prepared differently. For the baseline model
that employs Haar Cascade, the data is processed by
OpenCV by converting the images from BGR order to
RGB order. Following, the images are converted again
into grayscale such that the Haar Cascade Classifier can
process the image in four stages: 1) calculation of Haar
features, 2) creation of integral images, 3) Adaboost,
and 4) implementation of cascading classifiers.

For FCHD, the input images are scaled such that
the shorter dimension of the image is converted to the
size that is equal to a specified minimum pixel length
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such that the input images can be normalized. This
is to ensure that each input parameter has a similar
data distribution such that convergence is faster while
training the network. Finally, for the DeepFace model,
we simply created a directory structure such that for
each candidate film, its frames were images that were
hand-annotated to contain a single or multiple faces
within.

4 Methods

4.1 Haar Cascade Baseline Model

Given that the Haar cascade model is not a deep learning
face detector, the latter models should have significantly
higher accuracy and more robust face detections. How-
ever, the benefit of using Haar cascades is that they are
computationally efficient, have low memory require-
ments, and have a small model size.

The development environment requires OpenCV and
haarcascade_frontalface_default.xml, the pre-trained
face detector provided by the developers and maintain-
ers of the OpenCV library. The cv2.CascadeClassifier()
is used to load the detector on disk. Then, taking the
grayscale images generated from the data preprocess-
ing phase, we use cv2.rectangle() to draw a bounding
box around the detected faces. Note that the bounds of
the boxes are determined by the classifier’s detectMul-
tiScale() function which detects the faces in the input
and returns a list of bounding boxes (represented using
x and y coordinates where the faces are in the image).

To discuss our choice of parameters, the scaleFactor
controls the extent to which the image size is reduced
at each scale. In this experiment, we selected a value of
1.05 so that the size of the image is reduced by 5% at
each level in the scale pyramid. Next, minNeighbors pa-
rameter controls the number of neighbors each window
should have for the area in the window to be considered
a face. This threshold was set to 7 as the Haar Cascades
are incredibly sensitive to the parameter choices and
after trial and error, 7 was the value that minimized the
number of false-positive detections. The final parame-
ter is minSize which indicates the window’s minimum
size. To specify, minSize is a tuple of width and height
in pixel units that serves as the minimum dimensional
threshold to which a bounding box can be considered
valid.

4.2 FCHD

The goal of this section is to outline the process in
which we can fine-tune an FCHD model. As noted by
Vora et al., deep architectures are powerful as they are
capable of adapting to “generalized features” that have
high applicability. (Vora and Chilaka, 2018) The FCHD
model employs a VGG16 model as its base model. The
VGG16 is considered a powerful architecture as it has
been proven to be able to classify 1000 images of 1000
different categories with 92.7% accuracy. Due to its
public availability and ease to apply to transfer learning,

Figure 3: FCHD Architecture

it is one of the most popular deep learning algorithms
for image classification.

The architecture of Vora et al.’s FCHD head detection
model is shown in Figure 3, where in addition to the
VGG16 model above, three new convolutional layers are
added to allow for further hierarchical decomposition
of the input. For the purposes of our experiment, given
that we are employing the same FCHD model, we set
identical hyperparameters to Vora et al. The pre-trained
VGG16 model is trained using the ImageNet dataset,
and the new layers are “initialized with random weights
sampled from a standard normal distribution with µ =
0 and σ = 0.01”. (Vora and Chilaka, 2018). Other
hyperparameters include a weight decay of 0.0005, a
learning rate for the training set to 0.001, and an epoch
count of 15. Note that the whole training uses a PyTorch
framework.

Now, to discuss the reasons we chose to employ an
FCHD model, Vora et al.’s model specializes in head
detection for crowded scenes. Given that the Gaze Data
contains scenes where multiple characters from a movie
scene are conglomerated in one area, sophisticated deep
learning frameworks that can detect faces under chal-
lenging conditions (such as high occlusion) was neces-
sary.

4.3 DeepFace

The methodology for implementing DeepFace is incred-
ibly simple. Given that the face recognition pipeline
is offered as a PyPI package, the only requirements in-
clude installing the library itself and its prerequisites.
The advantages of this library are obvious. As afore-
mentioned, DeepFace offers all procedures necessary
for face recognition including: detect, align, normal-
ize, represent, and verify. (Serengil and Ozpinar, 2020)
For the purposes of this research, we will use the Face
Recognition algorithm they offer to analyze the cosine
similarity between images and to configure a localiza-
tion function. DeepFace serves as a good evaluation
metric for understanding the performances of the pre-
vious two architectures as well. In addition to the con-
ventional statistical metrics: accuracy, precision, and
recall, employing DeepFace will allow us to identify a
measure of result relevancy and understand the number
of truly relevant features that the model returns.
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Figure 4: Haar Cascade Results

5 Results and Discussion
5.1 Haar Cascade Baseline Model Results
We were able to run the Haar Cascade algorithm to
perform automated head detection on all of the frames
for every film. Unfortunately, the detection accuracy
for the model is not very high. The model performs
well when one or several people are clearly in the frame
as shown in Figure 4. However, in certain variations
in human pose, background clutter, motion blue, low
image resolution, occlusions, and poor lighting condi-
tions, the Haar Cascade algorithm performs poorly as
shown in Figure 4. This is somewhat to be expected
as we did not apply any image correction techniques
beforehand to remove the bias and noise that skew the
outcome of our models. Since the intensity of the pix-
els is an important determinant of the accuracy of the
Haar Cascade model, we can apply image processing
techniques such as histogram equalization to improve
contrast in images. This way, when the model collects
Haar features by performing calculations on adjacent
rectangular regions at a specific location in the detection
window, there will be a greater difference between the
sums of the pixel intensities, leading to stronger identi-
fication capacities. Furthermore, since we are applying
the Haar Cascade algorithm as our baseline model, we
did not fine-tune the pre-trained face detector haarcas-
cade_frontalface_default.xml on our Gaze Data. Since
this algorithm requires a lot of positive images of faces
and negative images of non-faces to train the classifier,
the pre-trained machine is most likely unable to detect
underlying patterns in our dataset.

5.2 FCHD Failure
We made a grave error with the FCHD model as al-
though the VGG16 model came pre-trained, the FCHD
architecture provided by Vora et al. forced us to train a
completely fresh model using our training set. Hence,
following a conventional approach, we split the hand-
annotated feature data frame into training and testing
sets by using Scikit-Learn’s train_test_split() method
with a test_size of 0.3 and a random_state of 42 so that
we can randomly select 30% of the data to belong to
the testing set. We do so to calculate out-of-the-bag
errors and evaluate how our algorithm generalizes to
completely unseen data. Then, to see the general trend
in feature importances to drop semantically insigifni-
cant features from the full list of hand-coded features,
we attempted to implement a Random Forest Classi-
fier (RFC) to predict the relationship of each of the
high-level features to the head feature (the target binary

Figure 5: Deep Face Recognition Demo Output

variable). Then, we employed 5-fold cross-validation
and Optuna’s hyperparameter optimization framework
to estimate the performance of the model on new data
through hyperparameter tuning. However, while we
were working on installing the necessary dependencies,
we ran into another major problem in that the CuPy
dependencies that the FCHD framework requires to run
were not only outdated but incredibly memory inten-
sive. Despite setting up Conda environments within our
allocated XSEDE folder, the training will stop due to
reaching the quota capacity or because of a dependency
error.

This result is incredibly disappointing for us as we
consumed many hours training the FCHD model on
the aforementioned Random Forest hyper-parameter op-
timized training set along with the frames of the raw
film sequences the features are keyed to; all so that we
can further the research done by Vora et al. However,
we still believe this to be an educational experience
as we learned about data preprocessing techniques, de-
pendency management, error handling, and machine
learning architectures trying to implement the FCHD
model.

5.3 DeepFace Results

We were successful in generating multiple pkl files that
demonstrate the cosine vector similarity between vari-
ous frames. One such pkl file that is saved in the Github
Repository Link at the bottom of the page holds the
cosine similarity scores between my Facebook profile
picture and the frames corresponding to the film Argo.
Using the popular VGG-Face model, the algorithm veri-
fied that my face is indeed a human face, and attempted
to discover similar faces within the Argos film frames
so that it can calculate the cosine similarity scores. This
face recognition model that builds on TensorFlow and
Keras is incredibly interesting as it automatically detects
and aligns faces, represents image pairs as vectors based
on passed facial recognition models, and finds distances
between representations based on a passed distance met-
ric. Running the face recognition task on DeepFace was
also incredibly computationally efficient as it extracted
and stored the representations beforehand. Thus, each
time we called the face recognition algorithm, if there
was a previous reference to either the input or the target
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Figure 6: Facial Attribute Analysis Module DeepFace

image, the algorithm would just find embeddings of the
target image. However, one significant limitation of
the program is that since the output of the recognition
algorithm is a pkl file or a Pandas data frame, we are
unable to visualize the bounding boxes that are one of
the central goals of this assignment. However, to vi-
sualize what the face localization function would look
like if they had a visual representation of the backend
processes, the Demo provides the following Figure: 5.
As is evident, the model reads in the input image and
finds images within a dataset that has the highest cor-
responding cosine scores. The pkl file included in my
GitHub submission along with the Jupyter Notebook
file contains instructions for how to run the DeepFace
algorithms.

However, there are critical socio-cultural issues with
the DeepFace recognition algorithm. DeepFace offers a
facial attribute analysis mode that detects the age, gen-
der, facial expression, and race of the target individual
(Reference Figure 6). Although this may seem initially
harmless, gender and racial biases in computer vision ap-
plications can lead to incredibly harmful consequences
for its users. Especially since this project works with
deep learning architectures that have opaque backend
processes when it comes to identifying variables that
lead to biased outcomes, it is critical that computer vi-
sion software engineers understand how to minimize a
deep learning model’s exposure to protected attributes
such as race and gender, visual appearances, etc. Thus,
when working with the DeepFace modules, although I
was impressed with how quickly I can draw relation-
ships between the high-level features of the Gaze Data,
I was slightly shocked by the inclusion of this contro-
versial feature that could lead to negative surveillance
practices and discriminatory profiling.

6 Conclusion
We presented a systematic literature review to investi-
gate different machine learning applications to perform
face detection from eye-tracking data for classification
tasks. We used three predominant approaches: The Haar
Cascade Baseline Model, FCHD, and DeepFace. Due
to time constraints and the failure to determine a good
scope of this assignment, in hindsight, we should have
definitely focused our efforts on one of the three models

instead of distributing our time and resources to config-
ure three. However, we were satisfied with the results of
the Cascade Baseline model as to a certain degree, the
model was able to detect faces and automate bounding
boxes, which was the purpose of this assignment. Given
that eye-tracking finds provide substantive information
on the responses and actions of the patient, employing
these models to conduct computer vision research def-
initely allowed us to hone our skills as programmers.
In future studies, we think it would be beneficial if we
performed a review on the usage of features from eye-
tracking data across the Gaze Dataset so that we can
better understand how to preprocess the data and per-
haps actually improve upon the FCHD architecture. The
GitHub repository containing my work is included here!
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